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Abstract. We investigate analytically the emergence of the categorization ability in the pseudo-
inverse attractor neural network. More pointedly, we consider the problem of learning an
extensive number of conceptsαN by storing a finite number of exampless of each concept. We
find that there is a critical valuesc = 1/α beyond which the categorization error, as measured
by the average fraction of unstable sites in the concepts, decreases monotonically withs.

1. Introduction

The research on attractor neural networks has focused mainly on their retrieval properties
due to the prospective use of these systems as associative memory devices. The basic idea
due to Hopfield [1] is to adjust the synaptic couplingsJij between theN neurons that
compose the network so that a prespecified set of binary patterns become the attractors of
the neural dynamics

Si(t + 1) = sign

(∑
j

Jij Sj (t)

)
i = 1, . . . , N. (1)

Here the spinSi(t) = ±1 describes the state of the neuroni at time t . Another interesting
emergent property of attractor neural networks is the categorization capability, namely, the
ability to create a representation (i.e. an attractor) for a concept to which the network has
been exposed only through examples [2]. Although this property has been fully investigated
for the Hopfield model [2–5], it is not known whether other models of associative memory
exhibit this ability as well.

The aim of this paper is to study the categorization ability of the pseudo-inverse attractor
neural network [6, 7]. Within the framework proposed by one of us [2], we consider
the problem of storingsP binary patternsξkl = (ξ kl1 , . . . , ξ

kl
N ), with k = 1, . . . , P and

l = 1, . . . , s, whose components are generated by the conditional probability distribution

p(ξkli |ξki ) =
(1+ b)

2
δ(ξkli − ξki )+

(1− b)
2

δ(ξkli + ξki ) (2)

where the patternξk = (ξ k1 , . . . , ξ
k
N) is the concept underlying thes examplesξkl . Here

the parameterb ∈ [0, 1] measures the average overlap between the examples and their
corresponding concept. It is related to the average normalized Hamming distanced between
these patterns byd = (1− b)/2. As usual, the components of the conceptsξki are chosen
as±1 with equal probability. Moreover, we assume that the number of concepts scales
linearly withN , i.e. P = αN , and that the number of exampless of each concept remains
finite in the thermodynamic limit.
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In the regime where thesP examples are stored perfectly (sP 6 N ) there is an analytical
prescription for writing the synaptic couplings of the pseudo-inverse in terms of the stored
patterns [6, 7],

Jij = 1

N

∑
kl

∑
k′l′
ξkli ξ

k′l′
j (C−1)kl,k′l′ (3)

whereC is the correlation matrix whose elements areCkl,k′l′ = 1/N
∑

i ξ
kl
i ξ

k′l′
i . The storage

capability and the retrieval properties of a variant of this model, where the diagonal terms
are set to zero, was studied in the case whereb = s = 1 [8]. In this paper, however, we
use an alternative formulation which allows us to also investigate the regime of imperfect
storage. This is achieved by calculating the minimal norm solution of the following set of
sP linear equations [9]

1kl
i = 1 k = 1, . . . , P and l = 1, . . . , s (4)

for eachi = 1, . . . , N , where

1kl
i =

1√
N
ξkli

∑
j 6=i

Jij ξ
kl
j (5)

is termed the stability of the example componentξkli . In contrast to equation (3), this
prescription yields an asymmetric coupling matrix. Since it does not specify the diagonal
terms, we impose the additional conditionJii = 0. Hence its storage capacity is
αc = 1/s − 1/sN ≈ 1/s. In the regime of imperfect storage (α > αc) the pseudo-inverse
solution is given by the set of couplings that minimize the following quadratic form, called
training energy,

Ei(Jij ) = 1
2

∑
kl

(1−1kl
i )

2 (6)

for i = 1, . . . , N . This formulation of the pseudo-inverse has been used to investigate the
parallel dynamics of extremely diluted [9] as well as fully connected [10] attractor neural
networks in the case whereb = s = 1. We must emphasize that the previous analyses
of the pseudo-inverse attractor neural network [8–10, 18] have concentrated on its retrieval
properties, while in this paper we focus on a totally different emergent property, namely,
the categorization ability. Moreover, those analyses were restricted to the regime of perfect
storage, while the main concern of the present study is the regime of imperfect storage
(α > αc), where the categorization property is expected to emerge. In fact, the analytical
study of this regime is quite challenging, since neither the thermodynamics approach [8]
nor the diluted approximation [9, 11, 18] can be used. The former because there is no
analytical prescription for the couplings, and the latter because the examples are correlated,
i.e. 〈ξkli ξ kl

′
i 〉ξ = b2 for l 6= l′. Here,〈. . .〉ξ stands for the averages over the sets of patterns

{ξkl} and{ξk}.
The statistical properties of the ensemble of couplings that satisfy (4) or minimize (6) can

be investigated analytically using the statistical mechanics formalism developed by Gardner
[12, 13]. In this paper we employ that formalism to calculate the average categorization
error εc defined by

εc =
〈〈

1

PN

P∑
k=1

N∑
i=1

2(−1k
i )

〉
J

〉
ξ

(7)

where2(x) = 1 if x > 0 and 0 otherwise, and

1k
i =

1√
N
ξki

∑
j 6=i

Jij ξ
k
j (8)
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is the stability of the concept componentξki . The notation〈. . .〉J is the thermal average,
i.e. the average over the ensemble of couplings that satisfy equation (4). For sake of
completeness we also calculate the average storage or classification errorεs defined by

εs =
〈〈

1

sPN

P∑
k=1

s∑
l=1

N∑
i=1

2(−1kl
i )

〉
J

〉
ξ

. (9)

We note thatεc and εs give the average fraction of unstable sites in the concepts and
examples, respectively. Actually, the statistical independence of the componentsξkli and
ξki for different sites, examples, and concepts allows us to evaluateεc using an alternative
formulation. First we calculate the probability distribution of the stabilities of the concepts,
namely,

Wc(γ ) = 〈〈δ(γ −1k
i )〉J 〉ξ (10)

and then evaluateεc using the relation

εc =
∫ 0

−∞
dγ Wc(γ ). (11)

Clearly, since the componentsξki are equivalent,Wc is independent of the indicesi andk.
A similar procedure can be used to calculate the storage errorεs.

The remainder of the paper is organized as follows. In section 2 we present the
calculation of the free-energy and order parameters that characterize the ensemble of
couplings of the pseudo-inverse. In section 3 we calculate the average categorization error
and in section 4 the average storage error. Section 5 is devoted to our concluding remarks.

2. Free energy

For a fixed sitei, the couplings that satisfy (4) are the global minima of the training energy
(6). The properties of these minima can be investigated using standard statistical mechanics
techniques [12, 13]. More specifically, we focus on the zero-temperature limit of the average
free-energy per site

fi = − 1

Nβ
〈lnZi〉ξ (12)

whereZi is the partition function

Zi =
∏
j

∫ ∞
−∞

dJij δ

(
Qi − 1

N

∑
j

J 2
ij

)
exp[−βEi(Jij )]. (13)

Hereβ is the inverse temperature, andQi = Q is the squared norm of the couplings which
must be carefully chosen in order to give the pseudo-inverse solution [9, 14]. As usual, the
evaluation of the quenched average in equation (12) can be effectuated through the replica
method: using the identity

〈lnZi〉ξ = lim
n→0

1

n
ln〈Zni 〉ξ (14)

we first calculate〈Zni 〉ξ for integer n and then analytically continue ton = 0 [15, 16].
Fortunately, since this model is a variant of the spherical model of a spin glass [17], the
replica symmetric ansatz for the order parameters, besides being locally stable [14], is
probably the exact solution to the problem of extremizing the free-energy density. As the
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calculations are straightforward and rather unilluminating we present only the final result
for the replica-symmetric free-energy density:

− βfi = 1

2

[
1+ ln

(π
2

)]
+ 1

2
ln(Q− qi)+ qi

2(Q− qi)
−α

2
(s − 1) ln[1+ β(Q− qi)(1− b2)] − α

2
ln[1+ β(Q− qi)(1− b2+ sb2)]

−α
2

βs(1+ qi)[1+ β(Q− qi)(1− b2)(1− b2+ sb2)]

[1+ β(Q− qi)(1− b2)][1 + β(Q− qi)(1− b2+ sb2)]
(15)

whereqi = 1
N
〈∑j 〈Jij 〉2J 〉ξ is the Edwards–Anderson order parameter which must be chosen

so as to maximizefi . Clearly, since the different sitesi are equivalent we can setqi = q
andfi = f . In order to single out the states that minimize the training energy (6) we must
take the limitβ →∞ in equation (15). We note that in this limitf → ε, whereε is the
average training error. In the regimeq < Q, the limit β →∞ in the saddle-point equation
∂f/∂q = 0 yields

q = αs

1− αs (16)

so thatε = 0. Sinceq > 0 this regime of perfect storage exists only forα 6 αc = 1/s. In
this case the minimal value that the squared normQ can take on is

Q = q = αs

1− αs . (17)

To study the regimeα > 1/s we must take the limitsβ → ∞ and q → Q such that
x ≡ β(Q− q) > 0 [13]. This procedure yields the following average training error

ε = −Q
2x
+ α

2

s(1+Q)[1+ x(1− b2)(1− b2+ sb2)]

[1+ x(1− b2)][1 + x(1− b2+ sb2)]
. (18)

In this case both parametersQ and x are obtained by solving the saddle-point equations
∂ε/∂Q = 0 and∂ε/∂x = 0. In particular, the former equation yields a quadratic equation
for x,

x2(αs − 1)(1− b2+ sb2)(1− b2)+ x[αs − 2(1− b2)− sb2] − 1= 0. (19)

Inserting the expression ofαs obtained from this equation into the saddle-point equation
∂ε/∂x = 0 yields

Q = xC

1− xC (20)

where

C = [1+ x(1− b2)(1− b2+ sb2)]2+ b4(s − 1)

[1+ x(1− b2+ sb2)(1− b2)][1 + x(1− b2)][1 + x(1− b2+ sb2)]
. (21)

Thus, given the control parametersα, s andb, we first obtainx by solving equation (19)
and then use equation (20) to findQ. We note that we must choose the root of (19) that
gives the largest training errorε [15, 16]. Fors →∞ we find thatx → 0 like 1/s, while
Q remains non-zero.

Since in the context of categorization the important parameter is the number of examples
per categorys, rather than the number of conceptsαN , henceforth we will refer to the
transition from the regime of perfect storage (ε = 0) to the regime of imperfect storage
(ε > 0) as occurring ats = sc where

sc = 1

α
. (22)



Categorization in the pseudo-inverse neural network 535

3. Categorization error

As mentioned in the introduction, to evaluate the average categorization error we will first
calculate the probability distribution of the stabilities1k

i . This is achieved by introducing
the auxiliary training energy

Eci (Jij ) =
1

2

∑
kl

(1−1kl
i )

2+ h

P

∑
k

δ(γ −1k
i ) (23)

with 1kl
i and1k

i given by (5) and (8), respectively. Hence

Wc(γ ) = 〈〈δ(γ −1k
i )〉J 〉ξ

=
〈〈

1

P

∑
k

δ(γ −1k
i )

〉
J

〉
ξ

= − lim
β→∞

1

β

∂〈lnZci 〉ξ
∂h

∣∣∣∣
h=0

(24)

whereZci is the partition function (13) withEi replaced byEci . The calculation ofWc is
very tedious and presents no particular difficulty since it involves the evaluation of Gaussian
integrals only. The final result is

Wc(γ ) = 〈ωc(γ, η)〉η (25)

where

ωc(γ, η) = [2πσ 2
c ]−1/2 exp

[
− (γ − γc(η))

2

2σ 2
c

]
(26)

and the notation〈. . .〉η stands for the average over the random variableη ≡ 2m−s distributed
according to the binomial probability distribution

B(m; s, b) = s!

m!(s −m)!
(

1+ b
2

)m (1− b
2

)s−m
m = 0, 1, . . . , s. (27)

In the regime of perfect storages 6 sc, the mean and the variance of the Gaussian
distributionωc are given by

γc(η) = bη

1− b2+ sb2
(28)

and

σ 2
c =

Q(1− b2)

1− b2+ sb2
(29)

with Q given by equation (17). We note that fors = 1,Wc gives the probability distribution
of the stabilities of a test patternξk that is at a fixed Hamming distanced to the fixed point
ξk1. The analysis of the number of unstable sites of the test pattern was used to investigate
the nature of the neighbourhood of the fixed points in the pseudo-inverse as well as in the
optimal weights attractor neural networks [18].

In the regime of imperfect storages > sc we find

γc(η) = xbη

1+ x(1− b2+ sb2)
(30)

and

σ 2
c =

Q[1+ 2x(1− b2)+ x2(1− b2)(1− b2+ sb2)]

[1+ x(1− b2+ sb2)]2
(31)
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Figure 1. Average categorization error as a function of the number of examples per category for
α = 0.1 and (from bottom to top)d = 0.1, 0.2, 0.3 and 0.4. The examples are stored without
error for s 6 10.

with Q andx given by equations (20) and (19), respectively.
With these results the evaluation of the categorization error given by equation (11) is

straightforward and yields

εc = 1

2

s∑
m=0

B(m; s, b)erfc

[
γc(η)√

2σ 2
c

]
. (32)

In figure 1 we present the average categorization error as a function of the number of
examples per category for fixedα and several values of the average Hamming distanced

between the examples and their corresponding concept. The divergence ofQi , given in (17)
and (20), ats = sc for any d > 0 is a typical feature of the pseudo-inverse learning rule
[9, 14], which leads to the divergence ofσ 2

c and hence to the resultεc = 1
2. This result can

be understood by noting that in a network with such large couplings tuned to satisfy (4),
the flipping of any extensive number of sites of the stable patternξkl , sayj = 1, . . . , dN
with 0 < d 6 1

2, will very likely unstabilize all sitesi for which the sumξkli
∑dN
j=1 Jij ξ

kl
j

is positive, as this term is almost certainly larger than 1 for anyd. Moreover, due to
the random character of the componentsξkli and the need to satisfy the constraint (4), on
average this term is positive for half of the sites only, which then become unstable, leading
to εc = 1

2.
For some values ofα there is a remarkable similarity between the results presented in

figure 1 and those obtained for the extremely diluted Hopfield model [5]. (We note that
for α > 0 the retrieval regime is absent in the fully connected Hopfield model [2, 4].)
Similarly to the Hopfield model at non-zeroα, for s > sc the categorization error decreases
monotonically withs and tends to a non-zero asymptotic valueε∞c in the limit s → ∞,
indicating thus that the concepts never become stable patterns. Forα 6 1, this result may
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Figure 2. Asymptotic value of the average categorization error as a function of the normalized
Hamming distanced between examples and concepts for (from bottom to top)α = 0.2, 0.5, 1,
1.5 and 2.

seem quite surprising since one expects naively that fors → ∞ the randomness in the
examples will somehow be averaged out, and so the network will effectively storeαN

patterns, namely, the concepts. Hence, asα 6 1, the concepts should be stable patterns. In
fact, this is exactly what happens in the Hopfield model [2], except that the stored patterns
are never stable in that model. Of course, the problem with this reasoning is that in the
Hopfield model the randomness in the examples is averaged out because of the additive
character of the Hebb learning rule [1], while the pseudo-inverse rule is set up precisely
to avoid the averaging out of the stored patterns, otherwise it would be useless to store
correlated patterns [6, 7]. Thus the finding thatε∞c is non-zero for the pseudo-inverse is a
non-trivial one. In figure 2 we showε∞c as a function ofd for several values ofα. Note
that ford = 0 the categorization error coincides with the storage error and hence it vanishes
for α 6 1. In particular, ford ≈ 0 we find

ε∞c ≈
1

2
erfc

[
1√

2(α − 1)

]
α > 1 (33)

and

ε∞c ≈ 1
2 erfc(δ) α 6 1

≈ 1

2
√
πδ

exp(−δ2) α < 1 (34)

whereδ = (sc− 1)3/2/d
√

32.
In figure 3 we present the average categorization error as a function ofα. It is interesting

to note that for fixeds andd there is an optimal value ofα > 1/s so thatεc is minimized.
Hence a moderate amount of static noise, caused by the microscopic overlap between the
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Figure 3. Average categorization error as a function ofα for d = 0.2 and (from bottom to top
at α = 2 ) s = 25, 20, 15, 10, 5, and 1. The examples are stored without error fors 6 1/α.

concepts, actually improves the categorization ability. Similar results were reported for the
Hopfield model in the cases of fast noise (non-zero temperature) [4] and static noise caused
by dilution [5]. As already mentioned, the peaks atα = αc = 1/s are due to the divergence
of Q. For α→∞ all curves tend toεc = 1

2.

4. Storage error

The relevant quantity for the analysis of the storage properties of the pseudo-inverse attractor
neural network is not the average training errorε, which measures the quadratic deviation
of 1kl

i from 1, but the average classification or storage errorεs since it is only the sign of
1kl
i that matters for the stability of the componentξkli . Clearly, if ε = 0 thenεs = 0. The

procedure to calculate the average storage error is the same used in the previous section.
More pointedly, we introduce the auxiliary training energy

Esi (Jij ) =
1

2

∑
kl

(1−1kl
i )

2+ h

sP

∑
kl

δ(γ −1kl
i ) (35)

with 1kl
i given by (5), so that

Ws(γ ) = 〈〈δ(γ −1kl
i )〉J 〉ξ

=
〈〈

1

sP

∑
kl

δ(γ −1kl
i )

〉
J

〉
ξ

= − lim
β→∞

1

β

∂〈lnZsi 〉ξ
∂h

∣∣∣∣
h=0

. (36)

HereZsi is the partition function (13) withEi replaced byEsi . Although the calculation of
Ws is straightforward, in the sense that it involves only the evaluation of Gaussian integrals,
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it proved to be much more involved than the calculation ofWc. In the following we present
the final results only.

As before,Ws can be written as

Ws(γ ) = 〈ωs(γ, η)〉η (37)

whereωs(γ, η) is a Gaussian distribution of meanγs(η) and varianceσ 2
s (η). In the regime

of perfect storages 6 sc we find γs(η) = 1 andσ 2
s (η) = 0, so thatWs(γ ) = δ(γ − 1).

Hence, as expected,εs = 0 in this regime. Fors > sc we find

γs(η) = sx(1− b2)[1+ x(1− b2+ sb2)] + xb2η2

s[1+ x(1− b2)][1 + x(1− b2+ sb2)]
(38)

and

σ 2
s (η) =

s2AQQ+ b2x2Aηη
2

s2[1+ x(1− b2)]2[1+ x(1− b2+ sb2)]2
(39)

where

AQ = 1+ x(1− b2+ sb2)(1− b2)[2+ x(1− 2b2+ sb2)] (40)

and

Aη = s(1− b2+ sb2)[1− x(1− b2)] − 2s(1− b2)− b2η2. (41)

Here the order parametersQ andx are given by equations (20) and (19), respectively. Thus
the average storage error fors > sc is given by

εs =
∫ 0

−∞
dγ Ws(γ )

Figure 4. Average storage error as a function of the number of examples per category for
α = 0.1 and (from bottom to top)d = 0.1, 0.2, 0.3 and 0.4. The examples are stored without
error for s 6 10.
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= 1

2

s∑
m=0

B(m; s, b)erfc

[
γs(η)√
2σ 2

s (η)

]
. (42)

In figure 4 we present the average storage error as a function of the number of examples
per categorys for fixed α and several values of the Hamming distanced. As expected,εc

increases monotonically fromεc = 0 at s = sc to εc = 1
2 for s →∞.

5. Conclusion

The results presented in this paper indicate that the pseudo-inverse attractor neural network
exhibits a categorization ability which is in all aspects similar to that found in the Hopfield
model. This finding corroborates the view that the categorization property is a limitation of
associative memory systems [19].

Some comments regarding the interpretation of the categorization errorεc defined by (7)
are in order. For the Hopfield model, the categorization error is defined by(1−mk)/2 where
mk is the overlap between the conceptξk and the closest equilibrium stateSeq [2]. Hence, it
actually measures the average Hamming distancedc betweenξk andSeq. Although the two
definitions will coincide only ifdc equals the fraction of unstable sites inξk, which is given
by (7), both quantities are equally good measures of the categorization ability provided that
εc is a monotonically increasing function ofdc. This is a reasonable assumption which
actually can be proved true in the regime of perfect storage [18]. We note that, in contrast
to the Hopfield model, there is no analytical tool to characterize the equilibrium states of
the pseudo-inverse beyond the storage capacity limit, so the calculation ofdc is not feasible
at present.
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